
IKAN ALM Architecture
Closing the Gap

Enterprise-wide Application Lifecycle Management

2 IKAN ALM Architecture

Table of contents
IKAN ALM SERVER Architecture..4

IKAN ALM AGENT Architecture...6

Interaction between the IKAN ALM Server/Agent and the Phase Catalog......................................7

Glossary...8

For More Information.. 11

3IKAN ALM Architecture

Main ALM services that IKAN ALM provides are:

• Life Cycle

• Build

• Deploy

• Approval

• Notifi cations

Integrations off ered with other ALM tools are for:

• Version Control Repositories

• Requirements, Issue Tracking or
Defect Tracking systems

• Build tools

• Deploy tools

• Reporting tools

Summary
IKAN ALM is a server-agent Web Application
Lifecycle Management (ALM) solution with
a web-based Administrative console, and
consisting of a number of main ALM ser-
vices and a number of integrations with
other ALM tools.

All IKAN ALM actions are defi ned and exe-
cuted through the Web application or the
Commandline Interface (CLI).

The Web application is used for defi ning the
Global and Project Administration items
and the User’s personal Desktop

4 IKAN ALM Architecture

The Global Administration is used for defining the sys-
tem settings, version control repository access, user
groups, machines, transporters (FTP, FileCopy, Secured
Shell),scripting tools (Ant, Maven or NAnt) and issue
tracking systems (e.g., JIRA, HP ALM, Collabnet or other).

The Project Administration is used for defining the proj-
ect with its lifecycle and levels (one or more Build, Test
and Production levels).

IKAN ALM actions are called Level Requests. A Level
Request consists of a Build Request or a Deploy (to Test
or Production) Request. Level Requests are created
through the Web Interface or the Commandline Interface.

All Global and Project administration information is
stored in a JDBC-compliant database, such as MySQL,
Oracle, DB2 or SQL Server. It also contains the log
of scripting actions executed while handling Level
Requests. The actual Build Results are stored in an
archived format (*.zip or *.tar.gz) in the Build Archive on
the IKAN ALM Server, so that they can be retrieved for
later Deploy Level Requests.

The Web application runs on a Web or application server
(preferably Apache Tomcat) on the IKAN ALM server
machine. The same machine also runs the SERVER dae-
mon process that handles the Build or Deploy Level
Requests. The Level Request handling consists of
running different steps, called Phases, such as the com-
munication with the external systems (Versioning, Issue
Tracking, …) and the interaction with the IKAN ALM
Agent(s) via Web services to handle the actual Build and
Deploy actions. As the Server process is OSGi-aware (see
IKAN ALM SERVER Architecture) IKAN ALM has the possi-
bility to not only execute Core Phases, but also Custom
Phases that it retrieves from the Phase Catalog.

An IKAN ALM agent is also an OSGi-aware daemon pro-
cess (see IKAN ALM AGENT Architecture) which transfers
sources (in case of Build) or a build result (in case of
Deploy) from the Server Machine, executes a script by
a Scripting Tool (ANT, Maven,…) and (in case of a Build)
archives the Build result to the Build Archive on the
Server. Next to those Core Phases, it can also run Custom
Phases, whereby it retrieves the phases from the phase
catalog as defined on the SERVER Machine.

From a user’s perspective, the Phase Catalog and the
Core and Custom Phases you find there, are a key IKAN
ALM feature.
For each phase executed by the SERVER or an AGENT, an
entry exists in the Phase Catalog.

IKAN ALM comes with Core SERVER and AGENT Phases
and any user can define and customize phases into the
Phase catalog.

In the Catalog, each phase consists of a physical JAVA
Archive (JAR) on the SERVER file system and related
metadata information of the phase. Custom phases are
added and managed through the Web interface.

The phase’s metadata information is used by both the
SERVER and AGENT when a phase is executed. The phase
name and version are key parameters to identify a phase,
whereby the versioning number allows you to execute
different versions of the same phase on the same SERVER
or AGENT(S).

IKAN ALM SERVER Architec-
ture
The SERVER is a Java process (Daemon) with a Monitor
and Scheduler sub process. It is executed in a JAVA Virtual
Machine (JVM) and it handles Level Requests given by a
user through the Web interface or initiated through the
Commandline Interface.

The monitor process steers the interaction with the
Version Control Repositories when a Level Request is
executed (check-out of source code, tagging of source
code) and it will communicate with the AGENTS to make
sure that the Build and Deploy processes are executed
correctly (see IKAN ALM AGENT Architecture).

Support for Continuous Integration, Nightly Builds or
Continuous Delivery is handled by the Scheduler pro-
cess. The Scheduler will trigger the Version Control
Repository to see if source code has been changed.
This project-based triggering is based on pre-defined
moments (every night at 8PM) or time intervals (every
hour, every 5 minutes, …)1.

1 Note that Continuous Integration may also be realized by a hook
script that calls the IKAN ALM Commandline interface when a com-
mit is done in the versioning system.

5IKAN ALM Architecture

The SERVER is OSGi-aware and runs within Apache Karaf,
a light weight OSGI runtime container. Karaf supports
the Blueprint Service2 Component Frameworks, that we
selected and use. This Blueprint Service gives us the abil-
ity to make our Phases pluggable.

Other benefi ts the Karaf container brings are the inte-
grated JAAS security framework, the Feature Service,
i.e., the provisioning system that allows us to install and
update Phases automatically (see Interaction between
the IKAN ALM SERVER/AGENT and the Phase Catalog),
the OS integration (runs as a Windows service or Linux
daemon) and the possibility of hot deployment of OSGi
bundles.

The SERVER code is packaged in an OSGi “Server Mega-
bundle” wherein a number of key Blueprint Components
are declaring: the Phase Tracker and the Server Core
Phases. The Core phases are the basic building blocks
for handling Level Requests: checking-out of source code
from a Version Control Repository, the notifi cation and
management of Agents in order to ensure proper execu-
tion of Builds and Deploys, tagging of source code in the
VCR.

Each of these phases is registered as a Blueprint Service
when the Server mega-bundle is started and is kept
by the Phase Tracker that traces the Blueprint Phase
services.

The Server mega-bundle imports about 60 third party
libraries that all are translated to correct OSGi Bundles.
Most of them come from the SpringSource Enterprise
Bundle Repository3; others have been transformed by us
as they were not available in a public repository.

Finally, the Phase Tracker will also register the Custom
Phases: these are the Phases that execute a specific
script (Ant, NAnt or Maven), which are defined in the
Phase Catalog by the user himself and that are used to
execute specifi c processes (e.g., to interact with an exter-
nal archive like Nexus, Jenkins or TFS) on the SERVER for
a Level Request.

IKAN ALM Server OSGI

2 http://wiki.osgi.org/wiki/Blueprint
3 http://ebr.springsource.com/

6 IKAN ALM Architecture

Each of these phases resides in a separate OSGi bundle
that declares one Blueprint Service. At installation or
update, the Phase Tracker will pick it up and the Server
mega-bundle will consume it when it handles a Level
Request that uses that specifi c Custom Phase.

For the installation and update of the Custom Phases
(and also of the Core phases) from within the Phase
Catalog, the Karaf feature mechanism is used (see
Interaction between the IKAN ALM SERVER/AGENT and
the Phase Catalog).

IKAN ALM AGENT Architec-
ture
The AGENT is a Java process (Daemon) with a Build
and Deploy sub process. It is executed in a JAVA Virtual
Machine (JVM) and it handles Builds and Deploys that are
initiated by the SERVER.

This process is so-called ”local” when it is executed on
the same physical machine as the SERVER. When it runs
on a diff erent physical machine, it is called a “Remote”
agent. The AGENT interacts remotely with the Monitor

process of the SERVER (via Web services) and locally with
a Transporter (FileCopy, FTP of SSH) and a scripting tool
(Ant, NAnt or Maven), whereby these scripting tools need
to be confi gured correctly in the IKAN ALM Web applica-
tion and on the AGENT machine.

Like the SERVER, the AGENT is OSGi-aware. The AGENT
also runs within Apache KARAF, giving the same benefi ts
to the AGENT as it gives to the SERVER. The Agent code is
packed into an OSGi “Agent Mega-bundle” where a num-
ber of key Blueprint Components are declared: the Phase
Tracker and the Agent Core Phases. The Core phases are
the basic building blocks for handling Level Requests:
transport of source (build) or a build result (deploy) ver-
ifi cation of a build or deploy script, execution of Builds
and Deploys.

Each of those phases is registered as a Blueprint Service
when the Agent mega-bundle is started and is kept by the
Phase Tracker that traces the Blueprint Phase services.

Finally, the Phase Tracker will also register the Custom
Phases: these are the Phases that execute a specific
script (e.g., for an Update of a database, or a Deploy to
a Web server) that eventually are defi ned in the Phase
Catalog by the user himself and that are used in a Build

IKAN ALM Agent OSGI

7IKAN ALM Architecture

or Deploy environment that is linked to an AGENT.

Each of those phases resides in a separate OSGi bundle
that each time declares one Blueprint Service.

For the installation and update of the Custom Phases
(and also the Core phases) from within the Phase
Catalog, the Karaf feature mechanism is used (see
Interaction between the IKAN ALM SERVER/AGENT and the
Phase Catalog).

Interaction between the IKAN
ALM Server/Agent and the
Phase Catalog
The following figure describes how the AGENT and
SERVER interact with the Phase Catalog when executing
a Level Request with a Build and Deploy action. The focus
is put on the distribution of a missing Custom Phase

during the execution of a Build by an AGENT. This process
consists of the following sequential steps.

The following steps happen before what is shown on
the fi gure:

1. The SERVER Monitor process starts a Level Request.

2. The SERVER collects a list of phases that need to be
executed from the database

3. This list may contain Server Core Phases and Custom
Phases (for example: A, B).

4. The SERVER consults the Phase Tracker component
to find the OSGi service objects from the Server
phases. (We assume that all the phases from the
Phase Tracker list are registered. If not, the same pro-
cess as the one for the Agent applies).

IKAN ALM Server/Agent and Phase Catalog interaction

8 IKAN ALM Architecture

5.	 The SERVER starts the sequential execution of the
phases. One of the Core Phases is a Build phase: The
SERVER notifies the AGENT via a Web service that he
needs to execute a Build.

Now the figure from above comes into play:

6.	 	The AGENT Build process picks up the Build request

7.	 The AGENT asks the SERVER a list of phases it needs
to execute.

8.	 	The AGENT gets a list of phases it needs to execute,
whereby the list can contain both Agent Core Phases
and Custom Phases.

9.	 	The AGENT consults its Phase Tracker component to
retrieve the OSGi service objects from the phases. All
Core Phases are found, the Custom Phase W has not
been registered yet. As a consequence, the Build pro-
cess is temporarily stopped.

10.	 The AGENT/Phase Tracker asks the SERVER to install
the missing Custom Phase W.

11.	 The SERVER reacts by sending an XML file with the
phase description and an URL that can be used by
the Phase Tracker to install the missing phase in
the AGENT Karaf Container. The XML file is a “Karaf
feature file4", with a URL that refers to the location
of the correct version of the missing phase W in the
Phase Catalog. The URL has as file type FTP or SSH,
depending on the Transporter that has been defined
for that specific AGENT (Machine).

12.	The AGENT passes the feature file to the Karaf
Feature Service. The Feature Service gets the
Custom Phase bundle from the Phase Catalog by
using the given URL and installs it in the OSGi frame-
work. The Blueprint component framework detects
that the Custom phase bundle contains a Blueprint
descriptor, and registers the phase as an OSGi ser-
vice. As a result, the Phase is registered in the Phase
Tracker.

13.	When the Build process starts again, the AGENT
consults the Phase Tracker again to find the OSGi
service objects for this phase. All Core Phases are
found, including the missing Custom Phase W.

14.	The AGENT starts the sequential execution of the
phases for this specific Build.

Glossary

4 https://cwiki.apache.org/confluence/display/KARAF/4.6.+Provisioning

Build A Build is an action on a Build Environment which involves several sub processes, called Build
Phases. It is always part of a Level Request, which may also contain other Builds or Deploys.
[A Build is handled by the IKAN ALM Builder]. It starts from sources that were retrieved from
the VCR to the Build Environment. A Build script is executed on those sources by a Scripting
Tool and gives a Build Result that is transferred to the Build Archive.

Build Archive The physical location (path) on the IKAN ALM Server where the Build Results are stored in a
compressed and archived format (*.zip or *.tar.gz). The Build Results are organized by Project
and by Project Stream.

Build Phase A Build Phase is a sub process that must be performed to complete a Build action. Different
Build Phases form the workflow of a Build and are inserted into a Build Environment. They
are executed by the IKAN ALM Builder Thread of the IKAN ALM Agent. A Build Phase may be a
Core Phase (e.g. Verify Build Script), or a Custom Build Phase created or imported by the User
in the Phase Catalog.

Build Tool Scripting Tool installed on a Build Environment

9IKAN ALM Architecture

Core Phase Core Phases form the IKAN ALM “Core” functionality. They can only be viewed, and cannot be
altered nor deleted. Consider them an integral part of IKAN ALM. When a new Level, Build or
Deploy Environment is created, its default workflow will be created and will completely con-
sist of a sequence of Core Phases. This default workflow may be changed by removing Core
Phases, by changing the sequence order, or by adding Custom Phases.

Custom Phase A Phase added by the User is also called a “Custom” Phase. It may be created from scratch
in Global Administration based on one or more working scripts and resources, or it may be
imported, using the “Import Phase” functionality. Once defined in Global Administration, a
Custom Phase may be inserted into (and consequently change) the default work flow of a
Level, Build or Deploy Environment. All Custom Phases are stored in the Phase Catalog on the
IKAN ALM Server, and are transported automatically to the IKAN ALM Server (Level Phase) or
IKAN ALM Agent (Build or Deploy Phase) when they are to be executed.

Deploy A Deploy is an action on a Deploy Environment which involves several sub processes, called
Deploy Phases. It is always part of a Level Request, which may also contain (an)other Build(s)
or Deploy(s). [A Deploy is handled by the IKAN ALM Deployer]. It starts from a Build Result
which is retrieved from the Build Archive. A Deploy script is executed on this Build Result by a
Scripting Tool.

Deploy Phase A Deploy Phase is a sub process that must be performed to complete a Deploy action. Different
Deploy Phases form the workflow of a Deploy and are inserted into a Deploy Environment.
They are executed by the IKAN ALM Deployer Thread of the IKAN ALM Agent. A Deploy Phase
may be a Core Phase (e.g. Transport Build Result) or a Custom Deploy Phase created or
imported by the User in the Phase Catalog.

Deploy Tool A scripting Tool installed on a Deploy Environment

IKAN ALM Agent A process (daemon) running on a Machine with sub processes to handle Build or Deploys.
An Agent running on the same Machine as the IKAN ALM Server is also referred to as “local”,
whereas running on a different Machine it is indicated as “remote”. During a Build or Deploy the
IKAN ALM Agent interacts remotely with the IKAN ALM Monitor, and locally with a Transporter
and with a Scripting Tool that must be correctly configured on the Machine.

IKAN ALM Server The Machine hosting the IKAN ALM web application and the IKAN ALM Monitor and Scheduler
processes.

Issue Tracking A system external to IKAN ALM, where Issues (defects, enhancements, tasks, …) may be
defined for a Project. Samples are Atlassian JIRA, HP Quality Center, Collabnet TeamForge,
Bugzilla or Trac. IKAN ALM can plug in to such a System and keep up with the Issues that were
handled for a Level Request.
The integration with JIRA, HP Quality Center and TeamForge is more advanced: Issues are
automatically synchronized through the lifecycle, and it is possible to keep a link with the
Level Requests in the JIRA Issue, HP Quality Center Defect or TeamForge Artifact.

10 IKAN ALM Architecture

Level Request A Level Request is an action on a Level which involves several sub processes, called Level
Phases. In most cases, a Level Request will contain at least one Build or Deploy action, which
will be executed on local or remote Machines. A Level Request may be created manually by the
user via the Web interface or the Command Line interface, or automatically by the Scheduler
Thread of the IKAN ALM Server. A Level Request is handled by the Monitor Thread of the IKAN
ALM Server.

Life-Cycle A Life-Cycle is a sequence of Levels that is linked to a Project Stream. It enables to set up the
step-by-step process to promote sources and build results from development, to test, QA, ...
to end up into production. One Project may have different Life-Cycles, e.g. for development on
the next release, for maintenance or urgency fixes on the release currently in production, for
parallel development,… A Life-Cycle may be reused in more than one Project Stream.

Phase Catalog The physical location (path) on the IKAN ALM Server where the Custom Phases (created from
scratch or imported) are stored in an archived format (Phase.name-Phase.version.jar, e.g.
com.ikanalm.echoproperties-1.0.0.jar). When an IKAN ALM Server or Agent needs to install
a missing Custom Phase, it will be retrieved from that location. That will be done using the
Transporter linked to the Server or Agent Machine.

Project An IKAN ALM Project maps to a project or subproject in a versioning system (VCR) which bun-
dles related sources. An IKAN ALM Project is a shell for one or more Project Streams in which
the real actions (Level Requests, Builds, Deploys) are done. It is possible to set up dependen-
cies between different Projects, also through the Project Streams.
There are 2 types of Projects:
Release-based Projects: IKAN ALM will work with the existing structure in the VCR system,
so that the objects to be extracted will be retrieved automatically when starting the build
process.
Package-based Projects: this concept enables to work with isolated files from the VCR system.
Objects must be selected manually in a Package structure created in IKAN ALM before starting
the Build process.

Scripting Tool A system external to IKAN ALM which can execute user-created scripts and which is installed
on a Machine. IKAN ALM integrates with ANT, NAnt and Maven2. When the Scripting Tool is
linked to a Build respectively Deploy Environment it is also referred to as a Build respectively
Deploy Tool. The script for executing a Build or Deploy must be stored in the VCR (together
with the sources) or in the Script Location on the IKAN ALM Server.

Transporter A Transporter is used for transporting files and directories between the IKAN ALM server and
a local or remote Agent handling the Build or Deploy processes. Therefore, a Transporter
must be defined for a specific Machine that is linked to the Build or Deploy Environment.
IKAN ALM supports the local FileCopy, remote FileCopy, SecureCopy and FTP Transporters.
A Transporter may transport checked-out sources from the Versioning System, a Build result
from the Build Archive, but also Custom Phases from the Phase Catalog.

11IKAN ALM Architecture

Version Control
Repository (VCR)

An external versioning system holding different versions of sources. Related sources are
bundled in a Project or subproject (sometimes also called a Module). A VCR Project may con-
tain different development streams, called head (=main or trunk) or branch streams. IKAN
ALM integrates with the following VCR’s: CVS, Subversion, Microsoft Visual SourceSafe, IBM
ClearCase and Serena PVCS. In order to connect to the VCR, a VCR Client must be installed on
the IKAN ALM Server and correctly configured. The IKAN ALM Monitor interacts with the VCR
by retrieving or tagging sources. The web interface interacts with the VCR to show revision
numbers, modified sources, … related to a Level Request.

For More Information
To know more, visit http://www.ikanalm.com
Contact IKAN Development: info@ikanalm.com

UK: Visit http://www.value-4it.com
Value-4IT Email: info@value-4it.com

IKAN Development N.V.
Schaliënhoevedreef 20 A

2800 Mechelen
Tel. +32 (0)15 44 50 40

info@ikan.be
www.ikan.be

© Copyright 2013 IKAN Development N.V.

The IKAN Development and IKAN ALM logos and names and all other IKAN product or service names are
trademarks of IKAN Development N.V. All other trademarks are property of their respective owners. No
part of this document may be reproduced or transmitted in any form or by any means, electronically
or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

Value-4IT Limited
7 Wright Road Long Buckby
Northampton NN6 7GG UK
+44 (0) 845 0579386
info@value-4it.com
www.value-4it.com

