

DASD I/O Performance Management Is Easy? Actually, Performed Well, It's Not Necessarily That Easy!

Michael W. Moss Value-4IT mossmw(at)value-4it.com Date of presentation (02/11/2016) Session <LJ>

Agenda

The Data In Memory Storage Hierarchy
 DASD I/O Analysis Process & Basics
 DASD I/O Operation Breakdown

- DASD I/O Operation Dreakdown
 DASD I/O Workload Analysis Overview
- DASD I/O Workload Analysis via RMF
- Advanced DASD Functions Overview
- The Disk Tuning Expert Demise?
- Collaboration With The Disk IHV
- DASD I/O Analysis Recommendations
- Real-Life z/OS DASD Case Studies
- Questions & Session Feedback

The Data In Memory Storage Hierarchy

Falling memory costs reduce physical/device level I/O activity

DASD I/O Analysis: Who/When/Why?

Why: Traditional Reactive Approach

SLA objectives compromised
Unacceptable user response times
Batch Window duration issues
Key I/O indicators being breached

Fixing a one-off I/O issue in isolation, typically doesn't resolve the overall performance problem.

Structured Overall System Approach

- Consider the complete DASD I/O subsystem, not one component
- ✓ Mange to SLA objectives
- ✓ Identify the issue in terms of I/O component (E.g. DISC, IOSQ)

A "Balanced System" is the utopia & the best I/O is a memory based I/O!

Who/When: The SMF Data Owner?

- Typically the CPU/Performance team
- Their focus is typically CPU (R4HA)
- Their SMF data reporting tool is generic, not RMF DASD I/O based
- Typical daily PDB data creation

Too many anomalies for today's I/O?

Storage Management Centric Process

- Daily aggregation of "golden" RMF data, trending for 12+ Months
- Personnel centric data classification (E.g. Manager, Technician, IHV)
- ✓ Proactive 24*7 I/O issue alerts
- I/O is system wide, Application, DBA, Performance & Storage consideration

A proactive 24*7 BAU process, ideally performed by Storage Management
2 November 2016
4

DASD Performance Management Process

Conceptually, very simple, but the devil as always, is in the detail!

I/O Operation Flow: The S/390 Legacy View

Life of an I/O operation

Recommended Reading (~2001): z/OS Intelligent Resource Director Redbook (SG24-5952-00)

Know the big picture; DASD performance starts with the Channel (CSS)! 2 November 2016

Collecting The Required Performance Data

7

Minimum SMF Data Required For DASD Performance Analysis

SMF (RMF) Record Number	Description
Туре 73 (Х49)	RMF Channel Path Activity
Type 74 (X4A) Subtype 1	RMF Device Activity
Type 74 (X4A) Subtype 5	RMF Cache Subsystem Device Activity
Type 74 (X4A) Subtype 7	RMF FICON Director Statistics
Type 74 (X4A) Subtype 8	RMF Enterprise Disk System Statistics
Type 78 (X4E) Subtype 3	RMF I/O Queuing & HyperPAV Activity
Type 42 (X2A) Subtype 6	DASD Data Set Level I/O Statistics

Note: EMC VMAX & HDS G1000 generate their own SMF records, for further detailed disk subsystem analysis.

Consolidate, Deduplicate & Enhance via Analytics – Avoid Too Much Data, Not Enough Facts

Recommended Reading: z/OS MVS System Management Facilities (SMF) - ieag200

RMF (CMF) evolves & improves, hence mandatory big data analytics... 2 November 2016

Resource Measurement Facility (RMF) Overview

RMF continues to evolve & improve since its first introduction in 1976... 2 November 2016

DASD I/O Operation Timing: Fundamentals

IOSQ Time: z/OS logical volume (I.E. UCB), *wait time Pending Time*: Hardware resource (E.g. Disk, Channel, Switch), *wait time Disconnect Time*: I/O (E.g. Read, Write, Sync) & Control Unit miss, *wait time Connect Time*: I/O (E.g. Disk, Channel, CPU) operation, *transfer time*

Recommended Reading: z/OS RMF Performance Management Guide - SC33-7992-nn

Response time analysis includes software & hardware considerations 2 November 2016

DASD I/O Operation: Typical Issue Analysis

DASD I/O Response Time: Issue Analysis														
Queueing Time	Ha	rdware Service Tim	e											
z/OS Time	PEND(ing) Time	DISC(onnect) Time	CONN(ect) Time											
Device (USB) busy	Cross System (I.E. z/OS)	Read cache miss	FICON channel busy (E.g.											
	device reserve		Speed, Protocol)											
High HyperPAV alias	Command Response (CMR)	Synchronous Remote	High FICON director port											
allocation (E.g. LCU, Port,	delay (E.g. CHPID, Port)	Copy write completion	utilization (PEND(ing))											
Channel contention)														
Device error recovery	System Assist Processor	High (synchronous) write												
(NB. z/OS operation)	(SAP) overhead	cache workload												
	Concurrent write operation	Control unit busy												
	domain extent conflict													
	High FICON director port	Multiple allegiance; PAV												
	utilization (CONN(ect))	write extent conflicts												

Know & appreciate your enemy for DASD I/O operation response time!

DASD I/O Operation: Issue Resolution Functions

DASD	I/O Response Time:	Function Enhance	ements
Queueing Time	Ha	rdware Service Tim	е
z/OS Time	PEND(ing) Time	DISC(onnect) Time	CONN(ect) Time
Parallel Access Volume	Multiple Allegiance (I.E. I/O	Adaptive Multi-stream	Modified Indirect Data
(PAV): Multiple I/O	parallelism, DB2, IMS)	Prefetching (AMP):	Address Word (MIDAW):
operations		Optimal sequential read	Optimized processing
		performance (DB2)	(EF, 4K Blocks, DB2 PF)
HyperPAV: Simplify PAV		Intelligent Write Caching	High Performance FICON
with control unit alias		(IWC): Optimal write	for z (zHPF): Optimal
		cache management	single disk CU port I/O
		Sequential Prefetching in	FICON Express nnS: 16,
		Adaptive Replacement	32+ Gbps performance
		Cache (SARC): Self	
		optimization & tuning	
		zHyperWrite: Metro	
		Mirror HyperSwap DB2	
		log writes	
		Easy Tier Integration	
		(DB2): Ensure same tier	
		for all data extents	
		List Prefetch Optimizer:	
		Faster zHPF fetching of	
		unordered DB2 data	

Disk controller functions can resolve many I/O performance issues!

I/O Workload Analysis: Hierarchical Approach

SLA/KPI: Not all workloads and devices are equal. Safeguard you know all of your business priorities before performing any I/O tuning. This will include WLM considerations, both CPU & I/O related. Eliminate isolated/interim/one-off/erroneous/device failure performance issues!

CPU/Memory: Safeguard a "balanced system" approach. Faster I/O processing dictates a higher CPU requirement for the increased workload. Collaboration is the key, Storage, DBA & CPU Capacity Planning personnel all play a key role as System z Data In Memory functions evolve (E.g. CPU Chip Cache, Memory Layers, Disk Memory & Functions).

Disk Subsystem: Before analysing individual DASD volumes, analyse the physical (cache, channels) & logical (LCU) performance of the disk subsystem (I.E. IBM DS8000, EMC VMAX, HDS VSP). Ultimately high DISC(onnect) times typically dictate insufficient disk cache capacity; put simply, DISC time is inversely proportional to disk cache effectiveness.

Disk Volumes: Having considered the Disk Subsystem, this will lead onto analysis of logical DASD volumes. Ultimately IOSQ is the #1 device level issue, as all device level I/O, queues at the same speed. PAV and HyperPAV are the simplest solutions for eradicating IOSQ issues, but even HyperPAV has concurrent alias allocation considerations. Sometimes, an individual file (data set) can cause I/O issues; hence DBA (Application) collaboration...

Reporting: Safeguard your Management team and peers receive your structured I/O analysis reports. As per the reality of high DISC and IOSQ times, sometimes only technology refreshes will increase I/O throughput. Faster FICON channels or protocols will reduce CONN(ect) time; higher capacity disk cache eradicates DISC(onnect) time, et al...

In an ideal world, every I/O would be a Data In Memory I/O! 2 November 2016

I/O Workload Analysis: Keep It Simple...

Rules Of Thumb (ROTs): A rule of thumb is a principle with broad application that is not intended to be strictly accurate or reliable for every situation. A ROT only applies while that technology and/or related function is current. *Recommendation: Don't use Rules Of Thumb (ROTs) for your I/O workloads*.

Baseline Data: A minimum or starting point used for comparisons. A baseline evolves over time, while being a true reflection of your workload. When changes occur, whether technology, workload or policy related, the baseline changes can be measured in terms of success criteria & future trends. Recommendation: Don't overlook the facts, a baseline never falsifies data.

Balance: Because of the storage hierarchy, balancing I/O workloads requires careful thought, as sooner or later, ideally sooner, the I/O will be processed by the CPU resource. Adding cache memory resource, impacts the balance. *Recommendation: Optimize the resources you have, before adding capacity.*

Base Architecture: Each Logical Control Unit (LCU) is restricted to 256 logical volumes (disk devices). In an ideal world, all LCUs would be equal, which can only follow, by allocating each & every LCU with 256 device addresses. Currently, a physical DASD subsystem supports 4096 devices via 16 LCUs. *Observation: A 256 device LCU design isn't a constraint, just a consideration.*

Let common sense apply & don't over complicate this important process! 2 November 2016 13

Cache Subsystem Summary: A Basic RMF View

PAGE

CACHE SUBSYSTEM SUMMARY

		z/OS V1R1	V1R13 SYSTEM ID OS04 RPT VERSION V1R13 RMF					RMF	D T	ATE 09/2 IME 09.3	28/2011 30.00	1 INTERVAL 14.59.996							
SSID	CU-ID	TYPE	CACHE	NVS	I/O RATE	OFF RATE	CACHE READ	DFW	RATE- CFW	STAGE	DASD DFWBP	I/O ICL	RATE BYP	OTHER	ASYNC RATE	TOTAL H/R	READ H/R	WRITE H/R	§ READ
0600	0600	3990-006	256	64	3.1	0.0	1.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.000	1.000	1.000	30.8
06C0	06E0	3990-006	512	32	38.6	0.0	16.5	22.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0.999	0.997	1.000	42.9
08A0	OABE	3990-006	512	32	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	N/A	N/A	N/A	N/A
6801	4000	2105-F20	8192	192	55.3	0.0	0.0	55.2	0.0	0.0	165.5	0.0	0.0	0.0	486.2	1.000	1.000	1.000	0.1
6802	4100	2105-F20	8192	192	49.5	0.0	0.2	49.3	0.0	0.0	145.1	0.0	0.0	0.0	500.8	1.000	1.000	1.000	0.4
6803	4200	2105-F20	8192	192	56.9	0.0	0.2	56.7	0.0	0.0	169.9	0.0	0.0	0.0	489.1	1.000	1.000	1.000	0.4
6804	4300	2105-F20	8192	192	50.7	0.0	0.2	50.5	0.0	0.0	149.0	0.0	0.0	0.0	465.6	1.000	1.000	1.000	0.4
6805	4400	2105-F20	8192	192	53.0	0.0	0.2	52.8	0.0	0.0	158.3	0.0	0.0	0.0	467.6	1.000	1.000	1.000	0.4
6806	4500	2105-F20	8192	192	42.0	0.0	0.3	41.8	0.0	0.0	123.6	0.0	0.0	0.0	434.6	1.000	1.000	1.000	0.6
6807	4600	2105-F20	8192	192	50.3	0.0	0.2	50.0	0.0	0.0	150.2	0.0	0.0	0.0	454.1	1.000	1.000	1.000	0.4

The RMF Cache Subsystem Summary report provides you with an entry point into the hierarchical (topdown) approach when performing I/O analysis activities. This report provides a simplistic viewpoint of what disk subsystems might be important to you, where any disk subsystems causing concern can be easily identified. However, subsequent and more detailed RMF reports would be required, providing more detail.

A great starting point, identifying all DASD subsystems & related statistics 2 November 2016 14

Cache Subsystem Summary: Top 20 Device View

CACHE SUBSYSTEM SUMMARY

	Z/OS VIRIS				SYSTEI RPT VI	SYSTEM ID OSO4 RPT VERSION V1R13 RMF				DATE 06/05/2011 IN TIME 09.30.00				1.59.996		In	
*** DEVI	ICE LIST	BY DA	SD I/O	RATE *	**												
VOLUME SERIAL	DEV NUM	SSID	% I/0	I/O RATE	CACI READ	HE HIT DFW	RATE CFW	STAGE	DASD DFWBP	I/O RA ICL	ATE BYP	OTHER	ASYNC RATE	TOTAL H/R	READ H/R	WRITE H/R	§ READ
PRD440 PPDS14 PRD437 PPD026 PRD554 PRD339 	077E 0220 0214 0B76 06B9 0231	00B1 00CC 00CC 00F1 00FE 00CC	25.7 6.9 4.5 27.4 59.1 2.4 TAL I/0	53.1 29.1 19.0 71.4 32.4 10.3	21.3 1.0 12.5 65.9 28.9 7.2	16.7 15.7 2.0 1.1 0.0 0.0	0.0 0.0 0.0 0.0 0.0	13.9 0.1 4.4 4.3 3.5 3.1	0.0 0.0 0.0 0.0 0.0	1.3 12.4 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1.6 2.0 2.5 0.0 0.0	0.714 0.573 0.765 0.939 0.893 0.698	0.604 0.943 0.738 0.939 0.893 0.698	1.000 1.000 0.998 0.975 1.000 N/A	67.9 6.2 89.2 98.4 99.9 0.0
VOLUME SERIAL PPD026	DEV NUM 0B76	SSID 00F1	% I/O 27.4	I/O RATE 71.4	CACI READ 65.9	HE HIT DFW 1.1	RATE CFW 0.0	 STAGE 4.3	DASD DFWBP 0.0	I/O RJ ICL 0.0	ATE BYP 0.0	OTHER 0.0	ASYNC RATE 0.5	TOTAL H/R 0.939	READ H/R 0.939	WRITE H/R 0.975	% READ 98.4
PRD327 PRD327 PRD343 PBV321 PRD307	0200 0515 022C 0507	00CC 00E4 00CC 00E4	11.8 17.5 11.2 15.3	49.8 48.9 47.3 42.8	21.3 3.0 24.8 47.1 4.1	46.8 24.0 0.2 38.2	0.0 0.0 0.0 0.0	0.1 0.1 0.0 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	6.3 5.5 0.1 13.0	0.998 0.998 1.000 0.988	0.973 0.996 1.000 0.891	1.000 0.999 1.000 1.000	6.2 50.8 99.7 10.8

This RMF Cache Subsystem Summary report consists of two top-20 lists of devices, DASD I/O Rate & Total I/O rate. These two lists allow you to identify the volumes with the highest I/O rates to the lower interface of a subsystem as well as the volumes with the highest I/O rates in total. Solving a possible problem with one of the listed devices would probably be of most benefit to the overall subsystem.

A top-20 rank report helps, but what is the performance baseline?

Cache Subsystem Summary: Activity Overview

				c	сасни	E SUE	SYST	сем ас	τιν	ΙΤΥ				DAC	- T
	z/OS V1R1	13	s I	SYSTEM RPT VEF	ID OS04 RSION V11	R13 RMF	DAT TIM	E 09/28/20 E 09.30.00	11	II	NTERVAL	14.59.99	6	PAG	
SUBSYSTEM TYPE-MODEL	3990-06 9396-001	CU-ID	074C	SSII	00B1	CDATE	06/05/2	011 CT	IME 09.	30.03	CI	NT 15.00			
TOTAL I/O TOTAL H/R	186363 0.865	CACHE I/ CACHE H/	/0 1819 /R 0.8	922 C	CACHE OF	FLINE	0								
CACHE I/O		REA	AD I/O RE	EQUESTS	3				WRIT	E I/O I	REQUEST	s			8
REQUESTS	COUNT	RATE	E HI	ITS	RATE	H/R	COUNT	RATE	FAST	R	ATË	HITS	RATE	H/R	READ
NORMAL	116003	128.9	953	313	105.9	0.822	15150	16.8	15150	10	6.8	15134	16.8	0.999	88.4
SEQUENTIAL	16655	18.5	5 160	617	18.5	0.998	34114	37.9	34114	31	7.9	34114	37.9	1.000	32.8
CFW DATA	0	0.0)	0	0.0	N/A	0	0.0	0	(0_0	0	0.0	N/A	N/A
TOTAL	132658	147.4	1111	930	124.4	0.844	49264	54.7	49264	54	4.7	49248	54.7	1.000	72.9
		CACHE	MISSES						MISC				N	ON-CACHE I/	0
REQUESTS	READ	RATE	WRITE	RATE	TRACKS	RATE				COUNT	RATE			COUNT	RATE
~								DFW BYPAS	s	289	0.3		ICL	4435	4.9
NORMAL	20690	23.0	16	0.0	12993	14.4		CFW BYPAS	S	0	0.0		BYPASS	6	0.0
SEQUENTIAL	38	0.0	0	0.0	870	1.0		DFW INHIB	IT	0	0.0		TOTAL	4441	4.9
CFW DATA	0	0.0	0	0.0				ASYNC (TR	(KS)	7239	8.0	_			
TOTAL	20744	RATE	23.0												
CKD STAT	ISTICS	₽	RECORD CA	ACHING-											
WRITE	268	REAL	MISSES	145	502										
WRITE HITS	268	WRIT	TE PROM	129	38										

This RMF report details summary cache statistics for one subsystem (00B1), detailing Cache I/O Requests & Non-Cache I/O requests. A H/R (Hit Rate) of 0.844 (84.4%) for Read I/O Requests is typical of a well performing DASD subsystem; a H/R of <80%, performance problems generally follow. A Write H/R of ~1.000 (100%) is typical. ICL (Inhibit Cache Load) is the number I/O requests that inhibited load of data into cache & data was not in cache. DFSMS Dynamic Cache Management & DB2 will selectively disable I/O operations for caching, using inhibit & bypass operation modes; hence, cache misses require thought!

Another solid detail report, but data aggregation & presentation requires...

DASD I/O Response Time: A Basic RMF View

DIRECT ACCESS DEVICE ACTIVITY

z/OS V1R13						SYSTEM ID UIG1 RPT VERSION V1R13 RMF				DA	TE 09/	28/20	11		INT	ERVAL	14.59.9	98 NDS		INCL	-
						ILL V	20.010					17.01			010						
	TOTAL SA	MPLES	= 900	IODF	= 00	CR-DA	TE: 0	9/14/2011	CR	-TIME:	10.31	.31	ACT :	ACT	IVATE						
		DETT	DEUTOR				1.011	DEVICE	AVG	AVG	AVG	AVG	AVG	AVG	AVG	8	8	8	AVG	8	8 1477
	CROTTR	NITM	TYDE	OF CVI	SEDIAT	. PAV	TCO	ACTIVITI	TTMR	TUSU	DIV	DB	TTMR	TTMP	TTMR	CONN	DEV	DEV	ALLOC	ANY	DEND
	GROOF	NOM	TIFE	OF CIL	JERIAL	·		MALD	T LIVIN			DLI	1.1.015	1.1.1915	1.1.1115	COMM	ULL	KED V	ALLOC	APPOC	FEND
		732A	33903	200	SYSXCA		002C	0.037	4.87	.000	.178	.000	.287	.000	4.58	0.02	0.02	0.0	0.0	100.0	0.0
		733A	33903	200	SYSAXA		002C	0.000	.000	.000	.000	.000	.000	.000	.000	0.00	0.00	0.0	0.0	100.0	0.0
		733D	33903	200	SYSDXA		002C	1.354	1.86	.000	.133	.000	.274	.052	1.54	0.21	0.22	0.0	14.0	100.0	0.0
					LCU		002C	1.391	1.94	.000	.134	.000	.275	.051	1.62	0.07	0.08	0.0	14.0	100.0	0.0
		OFOR	22000	10017	everme		0040	0 000	000	000	000	000	000	000	000	0 00	0.00	0.0	0.0	100.0	0.0
		9091	33909	10017	SISIMS SVSTMS	1	0040	0.000	.000	.000	.000	.000	.000	.000	.000	0.00	0.00	0.0	0.0	100.0	0.0
		9091	33909	10017	STSIMS SVSHSD	1 1	0040	1 707	.000	.000	122	.000	.000	.000	207	0.00	0.00	0.0	4.0	100.0	0.0
		9691	33909	10017	SVSODE	· 1	0040	0.041	2 22	.000	135	.037	.235	.000	2 01	0.03	0.03	0.0	3.0	100.0	0.0
		9692	33909	10017	SVSCDS	1	0040	0.041	2.22	.000	.133	.000	.214	.000	2.01	0.01	0.01	0.0	0.0	100.0	0.0
		9694	33909	10017	SYSHM1	1	0040	0.000	.000	.000	.000	.000	.000	.000	.000	0.00	0.00	0.0	0.0	100.0	0.0
	SMS	9695	33909	10017	SYSSMS	1	0040	0.012	.593	.000	.163	.000	.256	.000	.337	0.00	0.00	0.0	1.0	100.0	0.0
	SMS	9696	33909	10017	SYSST1	1	0040	0.001	1.79	.000	.512	.000	.640	.000	1.15	0.00	0.00	0.0	0.0	100.0	0.0
	SMS	9697	33909	10017	SYSST2	1	0040	0.001	2.94	.000	1.41	.000	1.54	.000	1.41	0.00	0.00	0.0	0.0	100.0	0.0
		9699	33909	10017	SYSHM2	1	0040	0.000	.000	.000	.000	.000	.000	.000	.000	0.00	0.00	0.0	0.0	100.0	0.0
	DB2	969A	33909	10017	SYSSD1	1	0040	0.001	1.66	.000	.384	.000	.512	.000	1.15	0.00	0.00	0.0	0.0	100.0	0.0
	DB2	969B	33909	10017	SYSSD2	1	0040	0.001	1.02	.000	.256	.000	.384	.000	.640	0.00	0.00	0.0	0.0	100.0	0.0
	DB2	969C	33909	10017	SYSSD3	1	0040	0.001	2.05	.000	.640	.000	.768	.000	1.28	0.00	0.00	0.0	0.0	100.0	0.0
		969E	33909	10017	SYSDB2	1	0040	0.000	.000	.000	.000	.000	.000	.000	.000	0.00	0.00	0.0	0.0	100.0	0.0
		969F	33909	10017	SYSIMS	1	0040	0.000	.000	.000	.000	.000	.000	.000	.000	0.00	0.00	0.0	0.0	100.0	0.0
					LCU		0040	3.047	1.05	.365	.143	.036	.259 .	002	.428	0.01	0.01	0.0	46.0	100.0	0.0

A restriction with RMF is that reports are for one z/OS system only, therefore z/OS system aggregation is required for complete LCU & Device activity, delivering a full view of overall disk subsystem performance. 15 Minute RMF intervals means 96 observations per day, for n systems & nnnn devices (n million records)!

RMF data collection is brilliant, aggregation & presentation requires...

DASD I/O Response Time: A Shared RMF View

z/05 1	SHAR V1R13	E D D I R E SYSPLEX SYSD RPT VERSION Y	CT ACCES PLEX I VIR13 RMF I	SSDEVIC: DATE 09/28/2011 TIME 08.30.00	E ACTIV INTERVA CYCLE	ITY 114.59.997 1.000 SECON	DS	PAGE
TOTAL SAM	PLES(AVG) = 900.	0 (MAX) = 90	0.0 (MIN) = 90	00.0				
DEV DEVICE NUM TYPE	SMF VOLUME PAV SYS SERIAL ID	DE IODF LCU AC SUFF RA	VICE AVG AVG TIVITY RESP IOS TE TIME TIM	G AVG AVG SQ CMR DB ME DLY DLY	AVG AVG A PEND DISC C TIME TIME T	VG % S ONN DEV I IME CONN I	% % DEV DEV UTIL RESV	AVG NUMBER ALLOC
2000 33909	MVSLIB *AL 1.0H SYS 1 SYS	L D 00 002B E 00 0029	0.138 0.327 0. 0.003 0.256 0.0 0.134 0.329 0.0	000 0.001 0.000 000 0.000 0.000 000 0.001 0.000	0.140 0.000 0.128 0.000 0 0.141 0.000 0	0.187 0.00 .128 0.00 (.188 0.00 (0.00 0.0 0.00 0.0 0.00 0.0	43.0 25.0 18.0
2001 33909	MVSTGT *AL 1.0H SYS 1 SYS	L D 00 002B E 00 0029	0.000 0.000 0. 0.000 0.000 0.0 0.000 0.000 0.0	.000 0.000 0.000 000 0.000 0.000	0.000 0.000 0.000 0.000 0 0.000 0.000 0	0.000 0.00 .000 0.00 (.000 0.00 (0.00 0.0 0.00 0.0 0.00 0.0	156 72.0 84.0

This RMF report provides a baseline level of information for each system sharing the disk device, presuming the Device Number is the same for all systems. In this instance for the MVSTGT VOLSER, the Device Number is different between z/OS systems, hence limited data is available. *Consolidate, Deduplicate & Enhance RMF Data via Analytics – Avoid Too Much & Too Little Data, Not Enough Facts!*

RMF data collection is brilliant, aggregation & presentation requires... 2 November 2016

DASD I/O Problem Reports: An RMF Flow #1

Command =	==>			RMF	V1R13	Syste	Line 1 of 27 Scroll ===> HALF							
Samples: 3	100		Syst	em: P	RD1 I	Date: (09/28/	/11 T:	ime: 10	.32.0	0 Ra	inge:	100	Sec
Partition CPs Online AAPs Onlin IIPs Onlin	MV	7S1 4 0 0	2094 Avg Avg	Model CPU Ut MVS Ut	l 716 :il%: :il%:	73 84	Apı EAı Apı Apı	ol%: opl%: ol% AAP ol% IIP	63 65 : 0 : 0	Pol Dat Tim	licy: e: me:	STAND 09/28 14.05	ARD /11 .07	
Group	Т	WFL %	Use TOT	rs ACT	RESP Time	TRANS /SEC	-AVG PROC	USG- DEV	-Aver PROC	age N DEV	umber STOR	Dela SUBS	ayed F OPER	or - ENQ
*SYSTEM *TSO *BATCH *STC *ASCH *OMVS *ENCLAVE PRIMEBAT NRPRIME	W 5 1 2 3	34 50 26 27 5 26 26 23 29 59	664 534 11 115 2 4 11 11 9 0 1	26 8 10 8 0 N/A 10 10 9 0 1	46.0 46.0 27.9 54.2 .000	13.95 13.95 0.00 0.00 0.00 N/A 0.06 0.06 0.06 0.06 0.02 0.00	5.1 2.6 1.5 1.1 0.0 0.2 1.5 1.5 0.9 0.1 0.6	5.0 2.1 1.4 1.5 0.0 0.0 N/A 1.4 1.4 1.4 0.0 0.0	1.9 0.4 1.4 0.0 0.0 3.7 1.4 1.4 0.8 0.2 0.4	4.1 1.5 1.7 1.0 0.0 0.0 N/A 1.7 1.6 0.0 0.0	$\begin{array}{c} 7.0\\ 2.0\\ 0.5\\ 4.5\\ 0.0\\ 0.0\\ 0.5\\ 0.5\\ 0.5\\ 0.0\\ 0.0\\ 0$	2.6 0.8 1.8 0.1 0.0 0.0 N/A 1.8 1.8 1.8 0.0 0.0	2.0 0.0 1.0 0.0 0.0 N/A 1.0 1.0 0.0 0.0	2.0 0.0 2.0 0.0 0.0 0.0 N/A 2.0 2.0 2.0 0.0 0.0
PRIMETSO TSOPRIME	W S 1 2 3	50 50 48 75 75	527 527 526 1 0	8 8 1 0	.759 .759 .403 30.6 126	13.98 13.98 13.98 0.08 0.02	2.6 2.6 2.1 0.3 0.1	2.1 2.1 1.9 0.2 0.0	0.4 0.4 0.3 0.1 0.0	1.5 1.3 0.1 0.0	2.0 2.0 2.0 0.0	0.8 0.8 0.8 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0

The *RMF Monitor III System Information (SYSINFO)* report shows whether there is any device delay. It also measures the size of the problem by the number of users affected. A subjective viewpoint of whether there is a problem, does it impact the service enough an should we do something about it should be considered. In this case, further investigation into the *SYSTEM, NPRIME and TSOPRIME groups follows.

RMF reports provide you with a high-level system wide viewpoint...

DASD I/O Problem Reports: An RMF Flow #2

Command =	====)	>		RMI	7 V1F	R13	Dela	ay Re	eport				Scr	Line coll =	21 of 49 ==> HALF
Samples:	10	0 Syst	tem:	PRI	01 I)ate:	04/	/07/1	L1 T	ime:	10.3	32.00) Ra	inge:	100 Sec
		Service		WFL	USG	DLY	IDL	UKN		- % I	Delay	red f	Eor -		Primary
Name	СХ	Class	Cr	옿	ş	ş	ł	8	PRC	DEV	STR	SUB	OPR	ENQ	Reason
MISTYDFS	в	NRPRIME		0	0	100	0	0	0	0	0	0	100	0	Message
BHOLEQB	В	NRPRIME		0	0	49	0	0	0	0	0	0	0	49	SYSDSN
BHOLWTO1	В	NRPRIME		0	0	33	0	1	0	0	0	0	33	0	Message
BRHI	Т	TSOPRIME		0	0	4	0	0	0	0	4	0	0	0	COMM
CONSOLE	S	SYSSTC		0	0	3	0	97	0	0	3	0	0	0	LOCL
VTMLCL	S	SYSSTC		0	0	2	0	98	0	0	2	0	0	0	LOCL
STARTING	Т	TSOPRIME		0	0	2	0	7	0	0	2	0	0	0	COMM
CATALOG	S	SYSSTC		0	0	1	0	99	0	0	1	0	0	0	LOCL
INIT	S	SYSSTC		0	0	1	49	0	0	0	1	0	0	0	LOCL
BHOLDEV3	В	NRPRIME		20	20	80	0	0	1	79	0	0	0	0	BBVOL1
BTEUDASD	В	NRPRIME		22	22	77	0	1	1	76	0	0	0	0	BBVOL1
BAJU	Т	TSOPRIME		24	24	75	0	1	0	75	0	0	0	0	BBVOL1
KLSPRINT	в	NRPRIME		25	25	75	0	0	0	75	0	0	0	0	BBVOL1
BHIM	Т	TSOPRIME		31	11	25	64	0	2	18	5	0	0	0	BBVOL1
BHOLPRO1	в	NRPRIME		52	13	12	0	0	12	0	0	0	0	0	BHOLPRO2

The *RMF Monitor III Delay Report (DELAY)* report identifies the address space (Name) and associated Service Class for potential delays, with an associated Primary Reason. In this instance the NRPRIME and TSOPRIME Service Class resources have significant delays, associated with BBVOL1. In this instance, we will delve deeper into the BBVOL1 resource, most likely a DASD volume...

RMF reports help you make informed decisions & where to look next... 2 November 2016

DASD I/O Problem Reports: An RMF Flow #3

Command =		=>		RME	7 V1R	13	Device De	Line 1 of 9 Scroll ===> HALF						
Samples:	10	00 Sy	stem:	PRI	D1 D	ate:	04/07/11	Т	ime:	10.3	2.00	Range	: 10	0 Sec
			DLY	USG	CON			Ma	in De	lav	Volu	me(s) -		
Jobname	С	Class	8	옿	ş	ł	VOLSER	욯	VOLS	ER	÷	VOLSER	옿	VOLSER
BHOLDEV3	в	NRPRIME	79	15	4	72	BBVOL1							
BTEUDASD	в	NRPRIME	76	20	4	75	BBVOL1							
KLSPRINT	в	NRPRIME	75	23	4	75	BBVOL1							
BAJU	Т	TSOPRIME	75	19	1	71	BBVOL1							
BHIM	Т	TSOPRIME	18	6	1	16	BBVOL1	1	430D1	3				
BHOL	Т	TSOPRIME	4	11	6	9	BBVOL1							
JES2	s	SYSSTC	4	3	0	6	SYSPAG							
BHOLNAM4	В	NRPRIME	1	0	0	1	BBVOL1							

The *RMF Monitor III Device Delays Report (DEV)* report identifies the address space (Jobname) and associated Service Class (Class) delayed due to device contention. In this instance we can see that DASD VOLSER BBVOL1 is the Main Delay Volume for several address spaces associated with the NPRIME and TSOPRIME service classes. Up to 4 DASD volumes causing delay can be identified, in this instance DASD VOLSER 430D13 is also listed, but its delay of 1% is inconsequential. We can also determine that when an I/O transfer is actually connected (CON %), DASD VOLSER BBVOL1 isn't very busy, when finally connected. In this instance, with 4 delay observations exceeding 70%, DASD VOLSER BBVOL1 will be further analysed.

RMF reports help you target the most likely cause of I/O operation issues 2 November 2016 21

#4 SEE

DASD I/O Problem	Reports: An	RMF Flow	Ħ
------------------	-------------	----------	---

RMF V1R13 Device Resource Delays Line 1 of 16 Command ===> Scroll ===> HALF												
Samples: 100	System: PRD1	Date: 04/07/1	1 Time: 10.32.00	Range: 100	Sec							
Volume S/ Act /Num PAV Rate	Resp ACT CO Time % %	N DSC PND %, % Reasons	DEV/CU Type Jobname	Service C Class	USG DLY % %							
BEVOL1 41.8 . 0222	099 88 21	66 PND 1 3	380K KLSPRINT H 990-2 BHOLDEV3 H BTEUDASD H BAJU 3 BHIM 3 BHOL 3 RMFGAT 4 BHOLNAM4 H BHOLPRO1 H	 NRPRIME NRPRIME NRPRIME TSOPRIME NRPRIME TSOPRIME SYSSTC NRPRIME NRPRIME NRPRIME NRPRIME 	6 92 2 92 5 91 3 91 1 22 3 10 0 1 0 1 0 1							
SYSPAG 10.9 . 0225	028 19 6	13 PND 0 3 3	380K BVAU 3 990-2 JES2 5	TSOPRIME SSYSSTC	6 14 0 7							
430D13 1.1 . 0220	032 4 2	2 PND 0 3 3	380K BENK 990-2 BHIM BHOL	TSOPRIME TSOPRIME TSOPRIME	0 1 0 1 2 0							
SYSCAT 0.3. 0221	017 0 0	0 PND 0 3 3	380K INIT 990-2	SYSSTC	0 1							

The *RMF Monitor III Device Resource Delays Report (DEVR)* report identifies all of the address spaces (Jobname) being delayed by a DASD VOLSER (Volume). In this instance, we first identified several address spaces being delayed, then the associated DASD VOLSER and DEV/CU details. Going back to S/370 I/O basics, a faster CU (3990-3) and associated DEV (3380K) would most likely resolve this issue.

Can we really use this process for a 24*7 operation with nnnn VOLSERs? 2 November 2016 22

Advanced DASD Functions & 3rd Party IHV's

IBM introduce advanced DASD functions for their System Storage DS8000 series disk subsystem, typically as Licenced Machine Code (LMC) features with full z/OS and System z server interoperability, while these functions are captured in the associated SMF (RMF) records. Therefore RMF instrumentation data evolves accordingly, providing the requisite data to measure DASD I/O performance. The latest DS8880 advanced DASD functions include Adaptive Multi-stream Prefetching (AMP), Easy Tier Integration, FICON Express 16S, High Performance FICON for z (zHPF), HyperPAV, Intelligent Write Caching (IWC), List Prefetch Optimizer, Multiple Allegiance, Modified Indirect Data Address Word (MIDAW), Sequential Prefetching in Adaptive Replacement Cache (SARC), zHyperWrite, et al. *Therefore the DASD performance analyst, needs to fully understand these current functions & whatever follows! RMF provides limited data for Replication (GDPS/PM SMF Type 105), FlashCopy & EasyTier...*

EMC (E.g. VMAX) and HDS (E.g. VSP G1000) attempt to fully emulate all major DASD functions (E.g. zHPF, HyperPAV, FICON Express, MIDAW), with Channel Subsystem (CSS) and Operating System (I.E. z/OS) interoperability, capturing any relevant data in associated RMF records. Such function emulation will be subject to Product Roadmap development time. Each IHV will have their own proprietary internal hardware (E.g. Cache) algorithms, which might impact RMF performance monitoring. Inevitably, other measurement data (SMF) is required.

EMC VMAX creates SMF data for SRDF activity, HDS VSP G1000 creates SMF data via an Analytics Recorder & there is even an SMF record for DS8000 GDPS Global Mirror session statistics. Observing the 80/20 rule, RMF delivers the majority of data for minimal effort; for a full I/O activity view, other SMF data is required. *Adopt a standard disk I/O measurement process, comparing IHV disk performance, as & if required.*

Change your IHV; don't modify, just evolve, a disk I/O monitoring process! 2 November 2016 23

Myth: The Demise Of The Disk I/O Tuner?

With an open architecture, plus a full understanding of the engineering, a human being can easily apply tweaks & repairs for a perfectly tuned system!

With Licensed Machine Code, plus proprietary algorithms & engineering, only the IHV with electronic diagnosis can truly tune this "closed" system...

For decades, Baby Boomers evolved I/O tuning techniques, knowing the basics & advanced functions, adapting these processes for 21st Century workloads.

Millennials require meaningful concise information from big data, allowing for informed business decisions. Micro managing disk controllers is not an option!

Don't rely upon the self-tuning promise, become the performance expert! 2 November 2016

Collaboration: Working With Your Disk IHV...

The Data In Memory I/O: Utilize 5% Solid State Drives (SSD) & deliver 10 times performance improvement. Allocate 10% SSD, to manage 90% of the I/O workload. Storage resources are becoming intelligent/self-aware, analysing data usage, making decisions on where hot/active & cold/inactive data should be stored.

The Big Data Era: The 21st Century data centre generates increasing amounts of data, typically random access, from mobile, cloud & social platforms, requiring fast & agile processing. All-Flash or SSD disk arrays will someday overtake traditional disk for primary storage workloads from a price/performance perspective.

The IHV: Saint or Sinner?: As per the System z server with the On Off Capacity on Demand (OOCoD) capability, an ability to activate additional disk electronic memory for capacity or component failure is arguably mandatory. As most disk I/O performance issues will become disk subsystem related, working closely with your disk IHV is advisable, where both parties collaborate to deliver the best price/performance balance for business data!

Proactively sharing performance data will develop a win-win relationship... 2 November 2016 25

DASD I/O Performance: Recommendations

The RMF product is cost efficient, with a similar cost to SDSF, delivering invaluable resource measurement metrics for the application enabling CPU & disk I/O hardware. SMF records generated by IHV DASD subsystems add further value to the baseline RMF data available for analysis. *Recommendation: RMF (CMF) data collection is cost-efficient & mandatory.*

Storage is no longer the party wallflower, it's the party animal! Data and the value derived from this unique resource differentiates one business from another. Safeguarding data availability & agile performance, is just as important as providing the requisite CPU capacity to process this data. *Recommendation: Ensure you have a robust disk I/O performance process.*

Ultimately RMF/SMF data is just unformatted resource metrics. Intelligent data reduction (deduplication, consolidation), supplemented by analytics (categorisation, summarisation) & experience based (I/O tuning techniques) enrichment is required, delivering meaningful information from massive data. *Recommendation: Systems Management software simplifies this process.*

The CPU R4HA is a high priority focus for all System z users. A well-tuned I/O subsystem can deliver cost savings, while optimizing performance. Tools such as IntelliMagic Vision (Disk Magic) & Technical Storage Control Centre (EADM) can assist organizations in optimizing the disk I/O resource. *Recommendation: Disk I/O & CPU R4HA metrics should be considered equally.*

Proactive DASD I/O performance analysis delivers business benefit 2 November 2016

z13 Server & z/OS 2.1 Operating System EMC VMAX (Symmetrix) DASD Subsystems DB2 11 Data Sharing Environment z13 Server Memory Upgrade: 25/06/2016

Customer Expectation: Higher throughput & performance for DB2 2 November 2016

In this example DISC time is of interest, when reviewing the RESP time 28 November 2016

Analyze on the LPAR DP01 from the 31/12/2015 to the 23/08/2016

TP: I/O decrease due to DB2 buffer pool, DISC and RESP increase

USA1
Activity I/O (I/O Sec) - Resp Time (ms) - Disc Time (ms) - Losq Time (ms) - Conn Time (ms) - Pend Time (ms)

Analyze on the LPAR DP01 from the 31/12/2015 to the 23/08/2016

Batch: An anomaly on the upgrade day, otherwise the I/O profile is normal ² November 2016

USA 1 — Used Volumes — Used Capa (Go)

Analyze on the LPAR DP01 from the 31/12/2015 to the 23/08/2016

Capacity: The used capacity of 3390 disk has the expected slight growth... 2 November 2016 31

I/O Service: Comparing before vs. after upgrade, I/O service is worse... 2 November 2016

I/O Service: Post upgrade service time issues via RESP/DISC (30) criteria
2 November 2016
33

Date	Time	LPAR	SG	V0	Туре	Dua	Los	I/O	Resp	Disc	Conn	Iosq	Pend	AVG	AVG	AVG 1	^
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	5.14	3.13	2.46	0.54	0.00	0.13	0.020	0.000	0.000	
\$/25/2	10:30	USA1	D	D	33909*32.8K	2	0	10.78	2.98	2.43	0.44	0.00	0.12	0.011	0.000	0.000	- 100
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	1.44	3.55	2.37	1.03	0.00	0.15	0.040	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	1.79	2.97	2.36	0.47	0.00	0.15	0.034	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	1.19	3.84	2.36	1.33	0.00	0.16	0.046	0.000	0.000	
5/25/2	10:30	USA1	D	D.,,	33909*32.8K	2	0	1.42	2.97	2.35	0.46	0.00	0.17	0.067	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	1.34	2.83	2.04	0.64	0.00	0.15	0.044	0.000	0.000	
5/25/2	10:30	USA1		u	33903*3,339	2	0	4.57	4.70	2.03	2.50	0.00	0.17	0.042	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	1.42	3.47	1.91	1.42	0.00	0.14	0.035	0.000	0.000	
\$/25/2	10:30	USA1	D	D	33909*32.8K	2	0	4.01	2.71	1.80	0.76	0.00	0.15	0.036	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	2.22	2.41	1.60	0.65	0.00	0.16	0.046	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	12.55	2.12	1.54	0.46	0.00	0.12	0.014	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	1.49	2.23	1.50	0.58	0.00	0.16	0.047	0.000	0.000	
5/25/2	10:30	USA1	D	D.,,	33909*32.8K	2	0	1.06	2,21	1.45	0.60	0.00	0.17	0.055	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	5.07	4.33	1.36	2.81	0.00	0.16	0.037	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	39.63	2.52	1.23	1.15	0.00	0.14	0.030	0.000	0.000	
5/25/2	10:30	USA1		U	33903*3,339	2	0	1.16	1.87	1.21	0.54	0.00	0.12	0.017	0.000	0.000	
5/25/2	10:30	USA1	D.,,	D	33909*32.8K	2	0	51.69	1.64	1.17	0.35	0.00	0.12	0.009	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	12.46	2.60	1.17	1.26	0.00	0.17	0.053	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	2.83	3.00	1.17	1.63	0.00	0.20	0.088	0.000	0.000	
5/25/2	10:30	USA1		S	33903*3,339	2	0	2.60	1.81	1.14	0.51	0.00	0.17	0.047	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	37.21	1.79	1.11	0.56	0.00	0.12	0.014	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	22.90	1,59	1.08	0.38	0.00	0.12	0.017	0.000	0.000	
5/25/2	10:30	USA1	D	D	33909*32.8K	2	0	31.46	1.50	1.07	0.30	0.00	0.12	0.009	0.000	0.000	v
¢																	>

I/O Service: Site specific TP time of 10:30 (normalized peak) pre upgrade 2 November 2016 34

Date	Time	LPAR	SG	V	Type	D	LCU	I/O	Resp	Disc	Disc	Iosq	Pend	AVG	AVG	AVG I	QInt ^
8/17/2	10:30	USA1	D	D	33909	2	0	1.75	7.88	6.88	2.46	0.00	0.20	0.082	0.000	0.000	12.40
8/17/2	10:30	USA1	D	D	33909	2	0	1.15	7.73	6.54	2.43	0.00	0.20	0.091	0.000	0.000	7.74
8/17/2	10:30	USA1	D	D	33909	2	0	1.60	5.09	4.26	2.37	0.00	0.20	0.085	0.000	0.000	7.13
8/17/2	10:30	USA1	D	D	33909	2	0	1.39	3.55	2.86	2.36	0.00	0.18	0.066	0.000	0.000	4.21
8/17/2	10:30	USA1	D	D	33909	2	0	3.22	3.41	2.63	2.36	0.00	0.17	0.047	0.000	0.000	8.98
8/17/2	10:30	USA1	D	D	33909	2	0	1.23	3.03	2.37	2.35	0.00	0.19	0.074	0.000	0.000	3.15
8/17/2	10:30	USA1	D	D	33909	2	0	1.18	2.82	2.27	2.04	0.00	0.18	0.063	0.000	0.000	2.88
8/17/2	10:30	USA1	D	D	33909	2	0	1.08	2.73	2.16	2.03	0.00	0.18	0.063	0.000	0.000	2.52
8/17/2	10:30	USA1	D	D	33909	2	0	1.20	2.72	2.10	1.91	0.00	0.18	0.062	0.000	0.000	2.72
8/17/2	10:30	USA1	D	D	33909	2	0	7.94	8.78	2.07	1.80	0.00	0.17	0.055	0.000	0.000	17.84
8/17/2	10:30	USA1	D	D	33909	2	0	1.25	2.57	2.02	1.60	0.00	0.19	0.070	0.000	0.000	2.76
8/17/2	10:30	USA1		U	33903	2	0	4.83	4.86	1.99	1.54	0.00	0.20	0.070	0.000	0.000	10.57
8/17/2	10:30	USA1	D	D	33909	2	0	10.20	2.69	1.93	1.50	0.00	0.17	0.054	0.000	0.000	21.46
8/17/2	10:30	USA1	D	D	33909	2	0	33.51	2.96	1.88	1.45	0.00	0.16	0.039	0.000	0.000	68.32
8/17/2	10:30	USA1	D	D	33909	2	0	1.28	2.65	1.88	1.36	0.00	0.19	0.066	0.000	0.000	2.63
8/17/2	10:30	USA1	D	D.,,	33909	2	0	3,52	2.49	1.86	1.23	0.00	0.15	0.029	0.000	0.000	7.05
8/17/2	10:30	USA1	D	D	33909	2	0	31.65	2.87	1.83	1.21	0.00	0.16	0.035	0.000	0.000	62.92
8/17/2	10:30	USA1	D	D	33909	2	0	1.29	2.31	1.72	1.17	0.00	0.18	0.059	0.000	0.000	2.44
8/17/2	10:30	USA1	D	D	33909	2	0	1.63	2.28	1.68	1.17	0.00	0.17	0.045	0.000	0.000	3.02
8/17/2	10:30	USA1	D	D	33909	2	0	12.05	2.36	1.65	1.17	0.00	0.17	0.044	0.000	0.000	21.84
8/17/2	10:30	USA1	D	D	33909	2	0	31.56	2.10	1.60	1.14	0.00	0.15	0.022	0.000	0.000	55.30
8/17/2	10:30	USA1	D	D	33909	2	0	5.04	4.67	1.60	1.11	0.00	0.19	0.053	0.000	0.000	9.01
8/17/2	10:30	USA1	D	D	33909	2	0	24.94	2.10	1.55	1.08	0.00	0.15	0.028	0.000	0.000	42.52
8/17/2	10:30	USA1	D	D	33909	2	0,	37.24	2.06	1.54	1.07	0.00	0.15	0.027	0.000	0.000	62.82 ¥
<			CUI		0.00000/00A		Service .		000000		second(1)						>

I/O Service: Site specific TP time of 10:30 (normalized peak) post upgrade ^{2 November 2016}

I/O Service: 80%+ workload cache read hit metric is the low watermark? 2 November 2016

I/O Service: A sustained cache read hit <80% severely degrades service! 2 November 2016

z13 Server & z/OS 2.1 Operating System EMC VMAX (Symmetrix) DASD Subsystems DB2 11 Data Sharing Environment z13 Server Memory Upgrade: 25/06/2016

Increased DB2 Server Memory Throughput Decreased Disk Subsystem I/O Throughput Higher Disconnect - Lower Cache Usage Investigate DB2 Sequential Prefetch Tuning Investigate EMC VMAX zBoost Upgrade

Customer Expectation: Higher throughput & performance for DB2 2 November 2016

Case Study 2: DB2 Performance Problems

zEC12 Server & z/OS 1.13 Operating System HDS VSP G1000 DASD Subsystems DB2 10 Data Sharing Environment

Customer Expectation: Identify DB2 performance problem

Case Study 2: DB2 Performance Problem #1

In this example DISC time is high all-day, with intermittent high IOSQ 2 November 2016

Case Study 2: DB2 Performance Problem #2

As per the high **DISC** time below, follows normal read cache misses

This highlights disk controller cache memory capacity constraints 2 November 2016

Case Study 2: DB2 Performance Problem #3

Analysing the high IOSQ shows PAV Alias constraints for LCU 0089/A/B 2 November 2016

Case Study 2: DB2 Performance Problem

zEC12 Server & z/OS 1.13 Operating System HDS VSP G1000 DASD Subsystems DB2 10 Data Sharing Environment

High Disconnect - Cache Capacity Issues Investigate Cache/Disk Subsystem Upgrade High IOSQ (HyperPav 128) - LCU Issues Consider HyperPav Reconfiguration (32/64) Consider Data Set Balancing Across LCUs

Customer Expectation: Identify DB2 performance problem

z13 Server & z/OS 2.1 Operating System IBM DS8870 DASD Subsystems DB2 11 Environment

Customer Expectation: Identify DB2 performance problem

		TP			Batch		TP+Batch				
	Average	Min	Max	Average	Min	Max	Average	Min	Max	_	
Resp Time	1.59	1.27	2.92	1.85	1.05	3.28	1.73	1.05	3.28	ms	
Disc Time	0.94	0.78	1.62	0.91	0.52	2.03	0.93	0.52	2.03	ms	
Iosq Time	0.01	0.00	0.08	0.02	0.00	0.11	0.01	0.00	0.11	ms	
Conn Time	0.48	0.30	1.03	0.75	0.37	1.09	0.62	0.30	1.09	ms	
Pend Time	0.16	0.13	0.19	0.18	0.14	0.22	0.17	0.13	0.22	ms	
Activity I/O	10359.54	3921.84	16728.25	10038.11	1428.13	21516.57	10185.43	1428.13	21516.57	I/OSec	

07.00

14100

08.30

14100

10.00

14100

11.30

14100

13.00

14/10/3

14.30

14/10/3

15.00

14/10/3

17.30

14/10/3

19.00

34/10/3

20.30

14/10/3

22.00

14/10/3

02.30

14100

01.00

14/10/5

64.00

14103

05.30

14100

Analysing the entire disk subsystem; I/O service times are acceptable 2 November 2016

5.00

23.30

34/10/3

		TP			Batch		TP+Batch			
	Average	Min	Max	Average	Min	Max	Average	Min	Max	_
Resp Time	2.18	1.60	3.43	2.29	1.23	5.83	2.23	1.23	5.83	ms
Disc Time	1.65	1.22	2.59	1.49	0.55	5.06	1.58	0.55	5.06	ms
Iosq Time	0.01	0.00	0.02	0.01	0.00	0.03	0.01	0.00	0.03	ms
Conn Time	0.40	0.26	0.68	0.63	0.31	1.26	0.50	0.26	1.26	ms
Pend Time	0.14	0.12	0.16	0.16	0.13	0.18	0.15	0.12	0.18	ms
Activity I/O	4320.43	1518.24	5964.70	3001.17	389.20	9417.03	3605.83	389.20	9417.03	I/OSec

Analysing global response times indicates potential high DISC time 2 November 2016

		TP			Batch		TP+Batch			
	Average	Min	Max	Average	Min	Max	Average	Min	Max	_
Resp Time	2.18	1.60	3.43	2.29	1.23	5.83	2.23	1.23	5.83	ms
Disc Time	1.65	1.22	2.59	1.49	0.55	5.06	1.58	0.55	5.06	ms
Iosq Time	0.01	0.00	0.02	0.01	0.00	0.03	0.01	0.00	0.03	ms
Conn Time	0.40	0.26	0.68	0.63	0.31	1.26	0.50	0.26	1.26	ms
Pend Time	0.14	0.12	0.16	0.16	0.13	0.18	0.15	0.12	0.18	ms
Activity I/O	4320.43	1518.24	5964.70	3001.17	389.20	9417.03	3605.83	389.20	9417.03	I/OSec

Analysing the DB2 STOGRP T1DSP indicates high DISC time

DCOLLECT data; DB2 STOGRP T1DSP has highest fragmentation

z13 Server & z/OS 2.1 Operating System IBM DS8870 DASD Subsystems DB2 11 Environment

High Disconnect - High DASD Fragmentation Consider DB2 STOGROUP Reorgs Consider SSD For DB2 STOGROUP(s): Eliminating Tablespace Reorg Requirements

Customer Expectation: Identify DB2 performance problem

Questions & Session feedback

• Please submit your feedback at

http://conferences.gse.org.uk/2016/feedback/lj

Session is LJ

